Name: \qquad
Instructor: \qquad
Math 10550, Exam I
September 19, 3023

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min .
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!				
1. (a)	(b)	(c)	(d)	(e)
2. (a)	(b)	(c)	(d)	(e)
3. (a)	(b)	(c)	(d)	(e)
5. (a)	(b)	(c)	(d)	(e)
6. (a)	(b)	(c)	(d)	(e)
7. (a)	(b)	(c)	(d)	(e)
8. (a)	(b)	(c)	(d)	(e)
9. (a)	(b)	(c)	(d)	(e)
10. (a)	(b)	(c)	(d)	(e)

Please do NOT write in this box.	
Multiple Choice___	\square
4.	
11.	\square
13.	
Total	

Name: \qquad
Instructor: \qquad

Multiple Choice

1.(6 pts.) Compute $\lim _{x \rightarrow-1^{-}} \frac{x^{2}+x}{x^{2}+2 x+1}$
(a) $+\infty$
(b) Does not exist and is not ∞ or $-\infty$.
(c) 0
(d) -1
(e) $-\infty$

Solution: First, note that $\lim _{x \rightarrow-1^{-}} \frac{x^{2}+x}{x^{2}+2 x+1}=\lim _{x \rightarrow-1^{-}} \frac{x(x+1)}{(x+1)(x+1)}=\lim _{x \rightarrow-1^{-}} \frac{x}{x+1}$. Now if you plug in $x=-1$ you get $\frac{-1}{0}$. Now, since we are looking at the limit from the left, we must argue if the limit goes to $+\infty$ or $-\infty$. Indeed the limit of the numerator is the constant -1 . Additionally, the when approaching -1 from the left, the denominator takes on negative values closer and closer to 0 . So $\lim _{x \rightarrow-1^{-}} \frac{x^{2}+x}{x^{2}+2 x+1}=+\infty$.
2. (6 pts.) For what values of c is the function f given by

$$
f(x)= \begin{cases}x^{2}+c^{2} x-3 & x<2 \\ c x+5 & x \geq 2\end{cases}
$$

continuous at $x=2$?
(a) $c=2$ only
(b) $c=1$ only
(c) $c=2$ and $c=-1$
(d) $c=0$ only
(e) No value of c makes f continuous at $x=2$

Solution: In order for $f(x)$ to be continuous at $x=2$ we need

$$
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=f(2)
$$

We have $\lim _{x \rightarrow 2^{-}} f(x)=2^{2}+2 c^{2}-3$ and $f(2)=2 c+5$, and so $2^{2}+2 c^{2}-3=2 c+5$. Therefore $c=2,-1$.

Name: \qquad
Instructor: \qquad
3. $(6$ pts. $)$ Let $f(x)=\sqrt{2 x^{2}+1}$. Which of the following limits equals $f^{\prime}(2)$?
(a) $\lim _{h \rightarrow 0} \frac{\sqrt{2(x+h)^{2}+1}-\sqrt{2 x^{2}+1}}{h}$
(b) $\lim _{x \rightarrow 0} \frac{\sqrt{2 x^{2}+1}-3}{x}$
(c) $\lim _{h \rightarrow 2} \frac{\sqrt{2(x+h)^{2}+1}-3}{h}$
(d) $\lim _{h \rightarrow 2} \frac{\sqrt{2(x+h)^{2}+1}-\sqrt{2 x^{2}+1}}{h}$
(e) $\lim _{x \rightarrow 2} \frac{\sqrt{2 x^{2}+1}-3}{x-2}$

Solution: Note that for any a we have $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$. Now, $f(2)=$ $\sqrt{2\left(2^{2}\right)+1}=\sqrt{9}=3$. So $f^{\prime}(2)=\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2}=\lim _{x \rightarrow 2} \frac{\sqrt{2 x^{2}+1}-3}{x-2}$.
4. (6 pts.$)$ Assume that $f(x)$ is a continuous function which takes the following values:

x	-1	0	1	2
$f(x)$	-10	10	-1	3

Which of the following conclusions can we make by using the Intermediate Value Theorem:

Solution: We see that $f(-1)<0<f(0)$ and hence there is $x_{1} \in(-1,0)$ such that $f\left(x_{1}\right)=0$ by the Intermediate Value Theorem (IVT) since f is continuous. Further $f(0)>0>f(1)$ and hence there is $x_{2} \in(0,1)$ such that $f\left(x_{2}\right)=0$ by IVT. Lastly $f(1)<0<f(2)$ and hence there is $x_{3} \in(1,2)$ such that $f\left(x_{3}\right)=0$ by IVT. We can conclude that there are at least 3 three solutions to $f(x)=0$ (note that there could be more).

Name: \qquad
Instructor: \qquad
5. (6 pts.) The graph of $f(x)$ is shown below:

Which of the following is the graph of $f^{\prime}(x)$?
(a)

(b)

(c)

(d)

(e)

Name: \qquad
Instructor: \qquad
Solution: We observe that $f(x)$ has two horizontal tangent lines. One has the x-coordinate located somewhere in the interval $[-2,-1]$ and the other one at $x=0$. Hence $f^{\prime}(x)$ has two zeroes at these two locations. Only graph (c) has this property.
6. (6 pts.) Find $f^{\prime}(x)$, if

$$
f(x)=2 x^{2} \sin (\sqrt{x})+\frac{1}{\sqrt{x}}
$$

(a) $-\sqrt{x^{3}} \cos (\sqrt{x})+4 x \sin (\sqrt{x})-\frac{1}{2 \sqrt{x^{3}}}$
(b) $2 x^{2} \cos (\sqrt{x})+4 x \sin (\sqrt{x})-\frac{1}{2 \sqrt{x^{3}}}$
(c) $-\sqrt{x^{3}} \cos (\sqrt{x})+\sin (\sqrt{x})+\frac{1}{2 \sqrt{x^{3}}}$
(d) $\sqrt{x^{3}} \cos (\sqrt{x})+4 x \sin (\sqrt{x})-\frac{1}{2 \sqrt{x^{3}}}$
(e) $4 x \cos (\sqrt{x})-\frac{1}{2 \sqrt{x^{3}}}$

Solution: Recall that the derivative of a sum is equal to the sum of the derivatives. The derivative of the first summand $2 x^{2} \sin (\sqrt{x})$ requires the product rule and the chain rule. Indeed, the derivative is $2 x^{2} \frac{d}{d x}\left(\sin (\sqrt{x})+\frac{d}{d x}\left(2 x^{2}\right) \sin (\sqrt{x})=2 x^{2} \cos (\sqrt{x})(1 / 2) x^{-1 / 2}+\right.$ $4 x \sin (\sqrt{x})=\sqrt{x^{3}} \cos (\sqrt{x})+4 x \sin (\sqrt{x})$.

The derivative of the second summand $\frac{1}{\sqrt{x}}$ simply requires the power rule and is equal to $-\frac{1}{2 \sqrt{x^{3}}}$.

Thus the derivative of $f(x)=\sqrt{x^{3}} \cos (\sqrt{x})+4 x \sin (\sqrt{x})-\frac{1}{2 \sqrt{x^{3}}}$

Name: \qquad
Instructor: \qquad
7. (6 pts.) Find the derivative of $f(x)=\tan \left(\sin \left(x^{2}\right)\right)$.
(a) $\left.2 x \cot \left(\sin \left(x^{2}\right)\right) \cos \left(x^{2}\right)\right)$
(b) $\left.\quad-2 x \sec ^{2}\left(\sin \left(x^{2}\right)\right) \cos \left(x^{2}\right)\right)$
(c) $2 x \sec ^{2}\left(\sin \left(x^{2}\right)\right) \sin \left(x^{2}\right)$
(d) $\left.\cot \left(\sin \left(x^{2}\right)\right) \cos \left(x^{2}\right)\right)$
(e) $\left.2 x \sec ^{2}\left(\sin \left(x^{2}\right)\right) \cos \left(x^{2}\right)\right)$

Solution. Let $f_{1}(x)=\tan x, f_{2}(x)=\sin x, f_{3}(x)=x^{2}$. We have $f_{1}^{\prime}(x)=\sec ^{2}(x), f_{2}^{\prime}(x)=$ $\cos x, f_{3}^{\prime}(x)=2 x$. Note $f(x)=f_{1}\left(f_{2}\left(f_{3}(x)\right)\right)$. By chain rule, $f^{\prime}(x)=f_{1}^{\prime}\left(f_{2}\left(f_{3}(x)\right)\right) f_{2}^{\prime}\left(f_{3}(x)\right) f_{3}^{\prime}(x)=$ $2 x \sec ^{2}\left(\sin x^{2}\right) \cos \left(x^{2}\right)$.
8. (6 pts.) If $f(x)=x \sin x+\cos x$, find $f^{\prime \prime}(x)$.
(a) $\quad f^{\prime \prime}(x)=-\sin x-\cos x$
(b) $f^{\prime \prime}(x)=-x \sin x+\cos x$
(c) $f^{\prime \prime}(x)=x \cos x+\sin x$
(d) $f^{\prime \prime}(x)=3 \cos x-x \sin x$
(e) $f^{\prime \prime}(x)=-x \sin x-\cos x$

Solution:

First note that $f^{\prime}(x)=x \cos x+\sin x-\sin x=x \cos x$. Then $f^{\prime \prime}(x)=x(-\sin x)+\cos x$.

Name: \qquad
Instructor: \qquad
9. $\left(6 \mathrm{pts}\right.$.) Let $h(x)=f \circ g(x)-\frac{f(x)}{g(x)}$. If $f(3)=0, g(3)=1, f^{\prime}(3)=3, g^{\prime}(3)=4$, $f^{\prime}(1)=7$, and $g^{\prime}(2)=5$, then find $h^{\prime}(3)$.
(a) 0
(b) 30
(c) 25
(d) 10
(e) 20

Solution: First, note that for any x, we have $h^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)-\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}$. Therefore $h^{\prime}(3)=f^{\prime}(g(3)) g^{\prime}(3)-\frac{g(3) f^{\prime}(3)-f(3) g^{\prime}(3)}{(g(3))^{2}}=f^{\prime}(1) g^{\prime}(3)-\frac{g(3) f^{\prime}(3)-f(3) g^{\prime}(3)}{(g(3))^{2}}=$ $7 * 4-\frac{1 * 3-0 * 4}{1^{2}}=28-3=25$
10. (6 pts.) If $f(x)=x^{3}-3 x^{2}-9 x+7$, find the x-coordinates of all points on the curve with horizontal tangent line.
(a) $\quad x=0$ and $x=1$
(b) $\quad x=4$ and $x=-2$
(c) $\quad x=-3$ and $x=1$
(d) $x=3$ and $x=-1$
(e) No points on the curve have horizontal tangent line.

Solution: We solve $f^{\prime}(x)=3 x^{2}-6 x-9=0$. So $x=3,-1$.

Name: \qquad
Instructor: \qquad

Partial Credit

You must show your work on the partial credit problems to receive credit!
11.(13 pts.) Find the derivative of

$$
f(x)=\sqrt{x+1}
$$

using the limit definition of the derivative.
Please include all of the details in your calculation.

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x+h+1}-\sqrt{x+1}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x+h+1}-\sqrt{x+1}}{h} * \frac{\sqrt{x+h+1}+\sqrt{x+1}}{\sqrt{x+h+1}+\sqrt{x+1}} \\
& =\lim _{h \rightarrow 0} \frac{(x+h+1)-(x+1)}{h(\sqrt{x+h+1}+\sqrt{x+1})} \\
& =\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{x+h+1}+\sqrt{x+1})} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h+1}+\sqrt{x+1}} \\
& =\frac{1}{2 \sqrt{x+1}}
\end{aligned}
$$

Name: \qquad
Instructor: \qquad
12. (14 pts.) Let $y=x^{2}+x$.
(a) Find the equation of the tangent line through the point $(-1,0)$.

Solution: $y^{\prime}(-1)=\left.\left(x^{2}+x\right)^{\prime}\right|_{x=-1}=2 x+\left.1\right|_{x=-1}=-1$. Hence the slope of the tangent line of $y=x^{2}+x$ is -1 at $(-1,0)$. So the equation is $y=-(x+1)=-x-1$.
(b) Find all points on the curve whose tangent line goes through the point $(2,5)$.

Solution: Suppose such a point has coordinate $\left(a, a^{2}+a\right)$. Then the slope of the tangent line at that point is $y^{\prime}(a)=2 a+1$. On the other hand this slope is given by $\frac{a^{2}+a-5}{a-2}$. Therefore $2 a+1=\frac{a^{2}+a-5}{a-2}$. So $a=1$ or 3 . Such points can be $(1,2)$ or $(3,12)$.

Name: \qquad
Instructor: \qquad
13.(13 pts.) Show that there is at least one solution of the equation

$$
x^{2}=2+\sin (\pi x) .
$$

Justify your answer, identify the theorem you use and explain why the theorem applies.

Solution:

First, note that finding a solution to $x^{2}=2+\sin (\pi x)$ is equivalent to finding the zeros to the function $f(x)=2+\sin (\pi x)-x^{2}$. Indeed, $f(x)$ is continuous since $2, \sin (\pi x)$ and $-x^{2}$ are all continuous and the sum of continuous functions is again continuous.

Further note that $f(0)=2+\sin (0)-0^{2}=2$ and $f(2)=2+\sin (2 \pi)-4=-2$.
The intermediate value theorem states that for any continuous function on an interval $[a, b]$ and a number N between $f(a)$ and $f(b)$ where $f(a) \neq f(b)$ there is a number $c \in(a, b)$ such that $f(c)=N$. We can apply the IVT to our case and conclude that since $f(2)=-2<0<2=f(0)$ there is some $c \in(0,2)$ such that $f(c)=0$.

Indeed for that c, we will have $c^{2}=2+\sin (c \pi)$.

Name:
Instructor:

Rough Work

Name: \qquad
Instructor: ANSWERS
Math 10550, Exam I
September 19, 3023

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min .
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!				
1. ($)^{\prime}$	(b)	(c)	(d)	(e)
2. (a)	(b)	($)$	(d)	(e)
3. (a)	(b)	(c)	(d)	(${ }^{\text {) }}$
5. (a)	(b)	($)$	(d)	(e)
6. (a)	(b)	(c)	(-)	(e)
7. (a)	(b)	(c)	(d)	($)$
8. (a)	($)^{\text {(}}$	(c)	(d)	(e)
9. (a)	(b)	($)$	(d)	(e)
10. (a)	(b)	(c)	(-)	(e)

Please do NOT write in this box.	
Multiple Choice___	\square
4.	
11.	\square
13.	
Total	

